Convolution quadrature for the wave equation with a nonlinear impedance boundary condition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolution quadrature for the wave equation with impedance boundary conditions

We consider the numerical solution of the wave equation with impedance boundary conditions and start from a boundary integral formulation for its discretization. We develop the generalized convolution quadrature (gCQ) to solve the arising acoustic retarded potential integral equation for this impedance problem. For the special case of scattering from a spherical object, we derive representation...

متن کامل

Fast convolution quadrature based impedance boundary conditions

We consider an eddy current problem in time-domain relying on impedance boundary conditions on the surface of the conductor(s). We pursue its full discretization comprising (i) a finite element Galerkin discretization by means of lowest order edge elements in space, and (ii) temporal discretization based on Runge-Kutta convolution quadrature (CQ) for the resulting Volterra integral equation in ...

متن کامل

Fast convolution quadrature for the wave equation in three dimensions

This work addresses the numerical solution of time-domain boundary integral equations arising from acoustic and electromagnetic scattering in three dimensions. The semidiscretization of the time-domain boundary integral equations by Runge-Kutta convolution quadrature leads to a lower triangular Toeplitz system of size N . This system can be solved recursively in an almost linear time (O(N logN)...

متن کامل

Sparse Convolution Quadrature for Time Domain Boundary Integral Formulations of the Wave Equation

Many important physical applications are governed by the wave equation. The formulation as time domain boundary integral equations involves retarded potentials. For the numerical solution of this problem we employ the convolution quadrature method for the discretization in time and the Galerkin boundary element method for the space discretization. We introduce a simple a-priori cutoff strategy ...

متن کامل

An adaptive numerical method for the wave equation with a nonlinear boundary condition

We develop an efficient numerical method for studying the existence and non-existence of global solutions to the initial-boundary value problem utt = uxx 0 < x <∞, t > 0, −ux(0, t) = h(u(0, t)) t > 0, u(x, 0) = f(x), ut(x, 0) = g(x) 0 < x <∞. The results by this numerical method corroborate the theory presented in [1]. Furthermore, they suggest that blow-up can occur for more general nonlineari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2017

ISSN: 0025-5718,1088-6842

DOI: 10.1090/mcom/3279